Q	uestio	n Answer	Marks	Gui	
1	(i)	(1, 0) and (0, 1)	B1B1	x = 0, y = 1; y = 0, x = 1	
			[2]		
	(ii)	$f'(x) = 2(1-x)e^{2x} - e^{2x}$	B1	$d/dx(e^{2x}) = 2e^{2x}$	
			M1	product rule consistent with their derivatives	
		$=\mathrm{e}^{2x}(1-2x)$	A1	correct expression, so $(1 - x)e^{2x} - e^{2x}$ is B0M1A0	
		$f'(x) = 0$ when $x = \frac{1}{2}$	M1dep	setting their derivative to 0 dep 1 st M1	
			A1cao	$x = \frac{1}{2}$	
		$y = \frac{1}{2} e$	B1	allow $\frac{1}{2} e^1$ isw	
			[6]		
	(iii) $A = \int_0^1 (1-x) e^{2x} dx$ $u = (1-x), u' = -1, v' = e^{2x}, v = \frac{1}{2} e^{2x}$		B1	correct integral and limits; condone no dx (limits may be seen later)	
	$u = (1 - x), u' = -1, v' = e^{2x}, v = \frac{1}{2} e^{2x}$		M1	<i>u</i> , <i>u'</i> , <i>v'</i> , <i>v</i> , all correct; or if split up $u = x$, $u' = 1$, $v' = e^{2x}$, $v = \frac{1}{2}e^{2x}$	
	$\Rightarrow A = \left[\frac{1}{2}(1-x)e^{2x}\right]_{0}^{1} - \int_{0}^{1}\frac{1}{2}e^{2x}.(-1)dx \qquad A$		A1	condone incorrect limits; or, from above, $\left[\frac{1}{2}xe^{2x}\right]_0^1 - \int_0^1 \frac{1}{2}e^{2x}dx$	
		$= \left[\frac{1}{2}(1-x)e^{2x} + \frac{1}{4}e^{2x}\right]_{0}^{1}$	A1	o.e. if integral split up; condone incorrect limits	
		$= \frac{1}{4} e^2 - \frac{1}{2} - \frac{1}{4}$			
	$= \frac{1}{4} (e^2 - 3) *$		A1cao	NB AG	
			[5]		

Q	Question		Answer	Marks	Gui
1	(iv)		$g(x) = 3f(\frac{1}{2}x) = 3(1 - \frac{1}{2}x)e^x$	B1	o.e; mark final answer
			y (1, 3e/2) (0, 3)	B1	through $(2,0)$ and $(0,3)$ – condone errors in writing coordinates (e.g. $(0,2)$).
			$y = \mathbf{f}(x)$	B1dep	reasonable shape, dep previous B1
			(2,0)	B1	TP at (1, $3e/2$) or (1, 4.1) (or better). (Must be evidence that $x = 1$, $y = 4.1$ is indeed the TP – appearing in a table of values is not enough on its own.)
				[4]	
	(v)		$6 \times \frac{1}{4} (e^2 - 3) [= 3(e^2 - 3)/2]$	B1	o.e. mark final answer
				[1]	

Q	Question		Answer	Marks	Gui
2	(i)		$a = \frac{1}{2}$	B1	allow $x = \frac{1}{2}$
				[1]	
	(ii)		$y^3 = \frac{x^3}{2x - 1}$		
			$\Rightarrow 3y^2 \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{(2x-1)3x^2 - x^3 \cdot 2}{(2x-1)^2}$	B1	$3y^2 dy/dx$
			$\Rightarrow 3y \frac{dx}{dx} = \frac{(2x-1)^2}{(2x-1)^2}$	M1	Quotient (or product) rule consistent with their derivatives; $(v du + u dv)/v^2 M0$
				A1	correct RHS expression – condone missing bracket
			$=\frac{6x^3-3x^2-2x^3}{(2x-1)^2}=\frac{4x^3-3x^2}{(2x-1)^2}$	A1	
			$\Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{4x^3 - 3x^2}{3y^2(2x-1)^2} *$	A1	NB AG penalise omission of bracket in QR at this stage
	$dy/dx = 0$ when $4x^3 - 3x^2 = 0$		M1		
	$\Rightarrow x^2(4x-3) = 0, x = 0 \text{ or } \frac{3}{4}$		A1	if in addition $2x - 1 = 0$ giving $x = \frac{1}{2}$, A0	
			$y^3 = (3/4)^3/1/2 = 27/32,$	M1	must use $x = \frac{3}{4}$; if (0, 0) given as an additional TP, then A0
			y = 0.945 (3sf)	A1	can infer M1 from answer in range 0.94 to 0.95 inclusive
				[9]	

Q	Question		Answer	Marks	Gui	
2	(iii)		$u = 2x - 1 \Longrightarrow \mathrm{d}u = 2\mathrm{d}x$			
			$\int \frac{x}{\sqrt[3]{2x-1}} dx = \int \frac{\frac{1}{2}(u+1)}{u^{1/3}} \frac{1}{2} du$	M1	$\frac{\frac{1}{2}(u+1)}{u^{1/3}}$ if missing brackets, withhold A1	
			5	M1	$\times \frac{1}{2} du$ condone missing du here, but withhold A1	
			$=\frac{1}{4}\int \frac{u+1}{u^{1/3}} \mathrm{d}u = \frac{1}{4}\int (u^{2/3} + u^{-1/3}) \mathrm{d}u \ *$	A1	NB AG	
		area = $\int_{1}^{45} \frac{x}{\sqrt[3]{2x-1}} dx$		M1	correct integral and limits – may be inferred from a change of limits and P their attempt to integrate (their) $\frac{1}{4} (u^{2/3} + u^{-1/3})$	
			when $x = 1$, $u = 1$, when $x = 4.5$, $u = 8$	A1	u = 1, 8 (or substituting back to x's and using 1 and 4.5)	
			$=\frac{1}{4}\int_{1}^{8}(u^{2/3}+u^{-1/3})\mathrm{d}u$			
			$=\frac{1}{4}\left[\frac{3}{5}u^{5/3}+\frac{3}{2}u^{2/3}\right]_{1}^{8}$	B1	$\left[\frac{3}{5}u^{5/3} + \frac{3}{2}u^{2/3}\right] \text{ o.e. e.g. } \left[u^{5/3}/(5/3) + u^{2/3}/(2/3)\right]$	
			$=\frac{1}{4}\left[\frac{96}{5}+6-\frac{3}{5}-\frac{3}{2}\right]$	A1	o.e. correct expression (may be inferred from a correct final answer)	
			$= 5\frac{31}{40} = 5.775 \text{ or } \frac{231}{40}$	A1	cao, must be exact; mark final answer	
				[8]		

3	(i)	When $x = 1$, $f(1) = \ln(2/2) = \ln 1 = 0$ so P is $(1, 0)$	B1	or $\ln(2x/1+x) = 0 \Rightarrow 2x/(1+x) = 1$ $\Rightarrow 2x = 1+x \Rightarrow x = 1$	
		$f(2) = \ln(4/3)$	B1 [2]	$ \rightarrow 2\lambda - 1 + \lambda \rightarrow \lambda - 1 $	if approximated, can isw after $\ln(4/3)$
	(ii)	$y = \ln (2x) - \ln(1 + x)$ $\Rightarrow \qquad \frac{dy}{dx} = \frac{2}{2x} - \frac{1}{1+x}$ OR $d = \frac{2x}{x} = \frac{(1+x)^2 - 2x \cdot 1}{2x}$	M1 M1 A1cao	one term correct mark final ans	condone lack of brackets $2/2x$ or $-1/(1+x)$
		OR $\frac{d}{dx}(\frac{2x}{1+x}) = \frac{(1+x)2-2x.1}{(1+x)^2} = \frac{2}{(1+x)^2}$ $\frac{dy}{dx} = \frac{2}{(1+x)^2} \cdot \frac{1}{2x/(1+x)} = \frac{1}{x(1+x)}$ At P, dy/dx = $1 - \frac{1}{2} = \frac{1}{2}$	B1 M1 A1 A1cao [4]	correct quotient or product rule chain rule attempted o.e., but mark final ans	need not be simplified need not be simplified

3	(iii)	$x = \ln[2y/(1+y)] \text{ or}$ $\Rightarrow e^{x} = 2y/(1+y)$ $\Rightarrow e^{x}(1+y) = 2y$ $\Rightarrow e^{x} = 2y - e^{x}y = y(2 - e^{x})$ $\Rightarrow y = e^{x}/(2 - e^{x}) [= g(x)]$ OR gf(x)=g(2x/(1+x)) = e^{\ln[2x/(1+x)]}/{2-e^{\ln[2x/(1+x)]}} $= \frac{2x/(1+x)}{2-2x/(1+x)}$ $= \frac{2x}{2+2x-2x} = \frac{2x}{2} = x$ gradient at R = 1/1/2 = 2	B1 B1 B1 M1 A1 M1A1 B1 ft [5]	 (<i>x</i>↔<i>y</i> here or at end to complete) completion forming gf or fg 1/their ans in (ii) unless ±1 or 0 	$x = e^{y}/(2 - e^{y})$ $x(2 - e^{y}) = e^{y} B1$ $2x = e^{y} + xe^{y} = e^{y}(1 + x) B1$ $2x/(1+x) = e^{y} B1$ $\ln[2x/(1+x)] = y [= f(x)] B1$ $fg(x) = \ln\{2e^{x}/(2-e^{x})/[1+e^{x}/(2-e^{x})]\} M1$ $= \ln[2e^{x}/(2-e^{x}+e^{x})] A1$ $= \ln(e^{x}) = x M1A1$ 2 must follow ¹ / ₂ for 9(ii) unless g'(x) used (see additional notes)
	(iv)	$let u = 2 - e^{x} \Rightarrow du/dx = -e^{x}$ $x = 0, u = 1, x = \ln(4/3), u = 2 - 4/3 = 2/3$ $\Rightarrow \int_{0}^{\ln(4/3)} g(x) dx = \int_{1}^{2/3} -\frac{1}{u} du$ $= \left[-\ln(u) \right]_{1}^{2/3} = -\ln(2/3) + \ln 1 = \ln(3/2)^{*}$ Shaded region = rectangle - integral $= 2\ln(4/3) - \ln(3/2)$ $= \ln(16/9 \times 2/3)$ $= \ln(32/27)^{*}$	B1 M1 A1 A1cao M1 B1 A1cao [7]	$2-e^0 = 1$, and $2 - e^{\ln(4/3)} = 2/3$ seen $\int -1/u du$ condone $\int 1/u du$ $[-\ln(u)]$ (could be $[\ln u]$ if limits swapped) NB AG rectangle area = $2\ln(4/3)$ NB AG must show at least one step from $2\ln(4/3) - \ln(3/2)$	here or later (i.e. after substituting 0 and $\ln(4/3)$ into $\ln(2 - e^x)$) or by inspection $[k \ln (2 - e^x)]$ k = -1 Allow full marks here for correctly evaluating $\int_{1}^{2} \ln(\frac{2x}{1+x}) dx$ (see additional notes)