Question	Answer	Marks	Gui
1 (i)	$(1,0)$ and (0, 1)	$\begin{gathered} \hline \text { B1B1 } \\ {[2]} \end{gathered}$	$x=0, y=1 ; y=0, x=1$
(ii)	$\begin{aligned} & \mathrm{f}^{\prime}(x)=2(1-x) \mathrm{e}^{2 x}-\mathrm{e}^{2 x} \\ & =\mathrm{e}^{2 x}(1-2 x) \\ & \mathrm{f}^{\prime}(x)=0 \text { when } x=1 / 2 \\ & y=1 / 2 \mathrm{e} \end{aligned}$	$\begin{gathered} \text { B1 } \\ \text { M1 } \\ \text { A1 } \\ \text { M1dep } \\ \text { A1cao } \\ \text { B1 } \\ {[6]} \end{gathered}$	$\mathrm{d} / \mathrm{d} x\left(\mathrm{e}^{2 x}\right)=2 \mathrm{e}^{2 x}$ product rule consistent with their derivatives correct expression, so $(1-x) \mathrm{e}^{2 x}-\mathrm{e}^{2 x}$ is B0M1A0 setting their derivative to 0 dep $1^{\text {st }}$ M1 $x=1 / 2$ allow $1 / 2 \mathrm{e}^{1}$ isw
(iii)	$\begin{aligned} & A=\int_{0}^{1}(1-x) \mathrm{e}^{2 x} \mathrm{~d} x \\ & \begin{aligned} & u=(1-x), u^{\prime}=-1, v^{\prime}=\mathrm{e}^{2 x}, v=1 / 2 \mathrm{e}^{2 x} \\ & \Rightarrow \quad A=\left[\frac{1}{2}(1-x) \mathrm{e}^{2 x}\right]_{0}^{1}-\int_{0}^{1} \frac{1}{2} \mathrm{e}^{2 x} \cdot(-1) \mathrm{d} x \\ &=\left[\frac{1}{2}(1-x) \mathrm{e}^{2 x}+\frac{1}{4} \mathrm{e}^{2 x}\right]_{0}^{1} \\ &=1 / 4 \mathrm{e}^{2}-1 / 2-1 / 4 \\ &=1 / 4\left(\mathrm{e}^{2}-3\right) * \end{aligned} \end{aligned}$	B1 M1 A1 A1 A1cao [5]	correct integral and limits; condone no $\mathrm{d} x$ (limits may be seen later) $u, u^{\prime}, v^{\prime}, v$, all correct; \quad or if split up $u=x, u^{\prime}=1, v^{\prime}=\mathrm{e}^{2 x}, v=1 / 2 \mathrm{e}^{2 x}$ condone incorrect limits; or, from above, ... $\left[\frac{1}{2} x \mathrm{e}^{2 x}\right]_{0}^{1}-\int_{0}^{1} \frac{1}{2} \mathrm{e}^{2 x} \mathrm{~d} x$ o.e. if integral split up; condone incorrect limits NB AG

Question		Answer	Marks	Gui
1	(iv)	$\mathrm{g}(x)=3 \mathrm{f}(1 / 2 x)=3(1-1 / 2 x) \mathrm{e}^{x}$	B1	o.e; mark final answer
		,3)	B1	through (2,0) and (0,3) - condone errors in writing coordinates (e.g. (0,2)).
			B1dep	reasonable shape, dep previous B1
		$\rightleftharpoons \|$$(2,0)$ x	B1	TP at ($1,3 \mathrm{e} / 2$) or ($1,4.1$) (or better). (Must be evidence that $x=1, y=4.1$ is indeed the TP - appearing in a table of values is not enough on its own.)
			[4]	
	(v)	$6 \times 1 / 4\left(e^{2}-3\right)\left[=3\left(e^{2}-3\right) / 2\right]$	B1	o.e. mark final answer
			[1]	

Question		Answer	Marks	Gui
2	(i)	$a=1 / 2$	B1 [1]	allow $x=1 / 2$
	(ii)	$\begin{aligned} & y^{3}=\frac{x^{3}}{2 x-1} \\ & \Rightarrow \quad 3 y^{2} \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{(2 x-1) 3 x^{2}-x^{3} \cdot 2}{(2 x-1)^{2}} \\ & \quad=\frac{6 x^{3}-3 x^{2}-2 x^{3}}{(2 x-1)^{2}}=\frac{4 x^{3}-3 x^{2}}{(2 x-1)^{2}} \\ & \Rightarrow \quad \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{4 x^{3}-3 x^{2}}{3 y^{2}(2 x-1)^{2}} * \\ & \mathrm{~d} y / \mathrm{d} x=0 \text { when } 4 x^{3}-3 x^{2}=0 \\ & \Rightarrow x^{2}(4 x-3)=0, x=0 \text { or } 3 / 4 \\ & y^{3}=(3 / 4)^{3} / 1 / 2=27 / 32, \\ & y=0.945(3 \mathrm{sf}) \end{aligned}$	B1 M1 A1 A1 A1 M1 A1 M1 A1 [9]	$3 y^{2} \mathrm{~d} y / \mathrm{d} x$ Quotient (or product) rule consistent with their derivatives; $(v \mathrm{~d} u+u \mathrm{~d} v) / v^{2} \mathrm{M} 0$ correct RHS expression - condone missing bracket NB AG penalise omission of bracket in QR at this stage if in addition $2 x-1=0$ giving $x=1 / 2$, A0 must use $x=3 / 4$; if $(0,0)$ given as an additional TP, then A0 can infer M1 from answer in range 0.94 to 0.95 inclusive

3	(i)	When $x=1, \mathrm{f}(1)=\ln (2 / 2)=\ln 1=0$ so P is $(1,0)$ $f(2)=\ln (4 / 3)$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & {[2]} \end{aligned}$	$\begin{aligned} & \text { or } \ln (2 x / 1+x)=0 \Rightarrow 2 x /(1+x)=1 \\ & \Rightarrow 2 x=1+x \Rightarrow x=1 \end{aligned}$	if approximated, can isw after $\ln (4 / 3)$
	(ii)	$\begin{aligned} & y=\ln (2 x)-\ln (1+x) \\ & \Rightarrow \quad \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{2}{2 x}-\frac{1}{1+x} \\ & \text { OR } \quad \frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{2 x}{1+x}\right)=\frac{(1+x) 2-2 x .1}{(1+x)^{2}}=\frac{2}{(1+x)^{2}} \\ & \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{2}{(1+x)^{2}} \cdot \frac{1}{2 x /(1+x)}=\frac{1}{x(1+x)} \\ & \text { At P, dy/dx}=1-1 / 2=1 / 2 \end{aligned}$	M1 M1 A1cao B1 M1 A1 A1cao [4]	one term correct mark final ans correct quotient or product rule chain rule attempted o.e., but mark final ans	condone lack of brackets $2 / 2 x$ or $-1 /(1+x)$ need not be simplified need not be simplified

